SE の雑記

SQL Server の情報をメインに Microsoft 製品の勉強内容を日々投稿

Archive for the ‘Synapse Analytics’ tag

Synapse Analytics のパイプライン / トリガーの実行状況の取得

without comments

Synapse Analytics は Azure Data Factory のようなパイプラインの実行機能を持っており、クラウドベースの ETL の実行を行うことができます。

Synapse Analytics と Data Factory のパイプラインの違いについては、Data integration in Azure Synapse Analytics versus Azure Data Factory に記載されており、いくつかの違いがあります。

image

Monitoring についても機能差があり、Synapse のパイプラインは Azure Monitor に統合が行われていません。
これにより、現時点では、パイプライン (またはトリガー) の実行状況の取得方法が、Data Factory とは異なります。

また、Azure Monitor と統合がされていないことにより、診断設定の利用可否も変わってくるかと思います。

Read the rest of this entry »

Written by Masayuki.Ozawa

12月 29th, 2020 at 10:41 pm

Synapse Analytics の Serverless SQL pool の分散クエリ処理エンジンについて

without comments

しばやん先生が Hack Azure! #4 – Synapse と Cosmos で実現するサーバーレスデータ分析 フォローアップ で紹介していますが、Synapse Analytics の Serverless SQL pool の分散クエリ処理エンジン (Distributed Query Processing Engine : DQP) については、POLARIS として、Microsoft Research から、「POLARIS: The Distributed SQL Engine in Azure Synapse」として、論文が公開されています。

論文を読むのはしんどいのですが、VLDB 2020 では、動画の公開も行われていましたので、こちらも合わせながら、ざっくりと眺めてみました。

Read the rest of this entry »

Written by Masayuki.Ozawa

11月 11th, 2020 at 9:00 am

Posted in Synapse Analytics

Tagged with

Synapse Analytics の SQL on-demand の DB を跨いだクエリの実行について

without comments

Synapse Analytics (Workspace) の SQL on-demand (Serverless SQL Pool) では、次の形態の DB を利用することができます。

  • SQL on-demand 用のデータベース
    • OPENROWSET により、Data Lake / Synapse Link のデータを検索
    • SQL on-demand のメタデータオブジェクトを格納するためのデータベース
  • 共有データベース
    • Spark Pool と SQL on-demand でテーブルを共有するためのデータベース

従来の、Azure SQL Database では「論理サーバー」を使用した環境の場合、サーバーはエンドポイントとなっていました。
エンドポイント内に複数のデータベースを作成することはできるのですが、各データベースは独立したリソースで動作しているため、データベースを跨いだクエリの実行にはかなり制限がありました。

SQL on-demand の場合、Azure SQL Database の論理サーバーモデルとは異なり、データベースを跨いだクエリの実行ができるようです。

Azure Synapse SQL でサポートされる Transact-SQL 機能 で、サポートされる T-SQL の機能が記載されているのですが、SQL on-demand では、データベース間のクエリはサポートとなっています。

image

 

Read the rest of this entry »

Written by Masayuki.Ozawa

11月 3rd, 2020 at 10:27 pm

Posted in Synapse Analytics

Tagged with

Synapse Analytics の SQL on-demand の共有メタデータ テーブルの照合順序について

without comments

SQL on-demand (Serverless SQL Pool) では、共有メタデータテーブル という形で Spark Pool で作製した Parquet フォーマットを使用したテーブルを、SQL on-demand で参照することができます。

先日投稿した、Synapse Analytics の Serverless SQL Pool (SQL on-demand) でテキストを参照する際の文字コードの設定 (おまけで Synapse Link for Cosmos DB) でも Synapse Analytics の照合順序に触れましたが、共有メタデータテーブルでも照合順序はポイントとなる点がありますので、触れておきたいと思います。

ドキュメントについては、SQL オンデマンド (プレビュー) で Apache Spark for Azure Synapse の外部テーブル定義を同期する を参照すると良いかと。

Read the rest of this entry »

Written by Masayuki.Ozawa

11月 2nd, 2020 at 10:17 am

Posted in Synapse Analytics

Tagged with

Synapse Analytics の SQL on-demand と Query Acceleration にはどのような違いがあるのか

without comments

Synapse Analytics の SQL on-demand(Serverless SQL Pool) と、Azure Storage の Query Acceleration では、Azure Storage 上のファイルに対して、SQL を実行することが可能です。

どちらもファイル対して、SQL を実行する機能ではありますが、これらの機能ではどのような違いがあるのか気になったので簡単にではありますが比較してみました。

ツールによりデータを取得するか、SDK からクエリを実行してデータを取得するかという、そもそものユースケースに違いがありますので、あまり比較しても意味はないかもしれませんが、ざっとした比較では次のようになるかと。

SQL on-demand Query Acceleration
検索対象として利用可能な Azure ストレージ Azure BLOB ストレージ
Azure Data Lake Storage Gen2
Azure BLOB ストレージ
Azure Data Lake Storage Gen2
(Synapse Link で Cosmos DB に接続可)
クエリの実行方法 TDS
データは TDS で取得
SDK
データは Stream オブジェクトで取得
サポートする SQL 一般的な検索の SQL をサポート
データソース間の JOIN が可能
限定的 な SQL をサポート
単一データソースによる検索
データのエクスポート TDS を利用可能なツール
CETAS
Stream オブジェクトをコードで操作
検索対象のファイル CSV
JSON
Parquet
CSV
JSON
一つのクエリで検索可能なファイル ディレクトリ
ワイルドカード
単一ファイル
メタデータによる検索するファイルのフィルター filename() 関数
filepath() 関数
メタデータ
BLOB インデックスタグ

 

Ignite 2020 の What’s New in Azure Storage では、Query Acceleration に関しては、次のような解説が行われていました。

image

「Deeply integrated into Azure Synapse Analytics for improved performance and cost」と説明がされています。
具体的にどのように Synaspe Anaytics と統合されているのかまでは解説されていないのですが、Synapse Analytics で使用されている Polaris という分散 SQL エンジンが内部的には使用されているのかもしれませんね。

Read the rest of this entry »

Written by Masayuki.Ozawa

10月 22nd, 2020 at 10:59 pm

Posted in Synapse Analytics

Tagged with

Synapse Link for Cosmos DB を SQL Ondemand で操作する場合のメモ

without comments

Synapse Link for Cosmos DB を SQL Ondemand (Serverless SQL Pool) で操作する場合のメモを。

SQL Ondemand なのか、Serverless SQL Pool なのかがよくわからないので、どちらでもヒットするようにしています (遠い目)

ドキュメントとしては次の内容をベースとしています。

Read the rest of this entry »

Written by Masayuki.Ozawa

10月 20th, 2020 at 8:51 am

Synapse Analytics の Serverless SQL Pool (SQL on-demand) でテキストを参照する際の文字コードの設定 (おまけで Synapse Link for Cosmos DB)

without comments

Synapse Analytics の Serverless SQL Pool (SQL on-demand) では、BLOB / ADL Gen2 上のファイルに対してクエリを実行することができます。

同様の内容を実現する機能としては、Azure Data Lake Storage のクエリ アクセラレーション があります。
こちらについては、しばやん先生が Azure Data Lake Storage の Query Acceleration が GA になったので試したら最高だった で機能の解説をされています。

この機能の比較をするために検証していたときに「そういえば、Serverless SQL Pool で、テキストを読むとき文字コードって何にする必要があったっけ?」と思い、軽く検証してみました。

今回は Shift-JIS / UTF8? / UTF16 LE の 3 パターンで検証しています。

使用しているデータは、本ブログのアクセスログを CSV に出力したものです。
image

シンプルな構成にするのであれば、次のような構成をしておけばいいのではないでしょうか。

  • ファイルは UTF8 のエンコードを使用する
  • データベースの照合順序は _UTF8 を使用する
    • 日本語環境の SQL Server の照合順序と同様にするのであれば、次の照合順序のいずれかを使用しておけば、最新のUnicode を考慮した文字コード体系になる
      • Japanese_XJIS_100_CI_AS_SC_UTF8
      • Japanese_XJIS_140_CI_AS_UTF8
    • 基本的な検索であれば、任意の照合順序に「_UTF8」を設定したものであれば、ある程度カバーできるはず
  • 検索条件で、文字列リテラルを使用する場合、「N’xxxxx’」の Unicde 変数で検索を行う。

Read the rest of this entry »

Written by Masayuki.Ozawa

10月 18th, 2020 at 12:20 am

Posted in Synapse Analytics

Tagged with